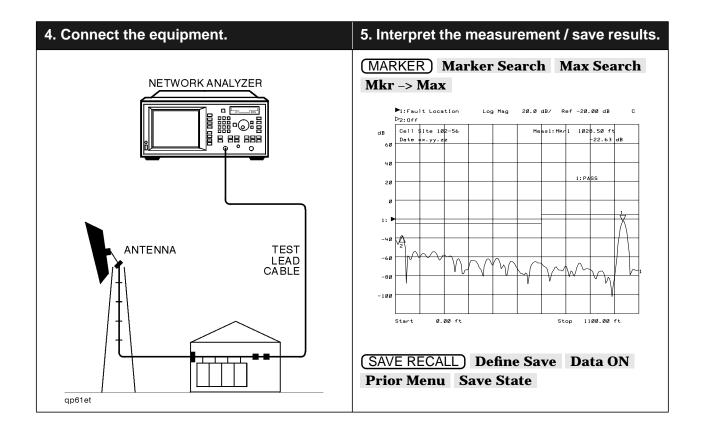
Cellular Antenna Quick Start Guide Agilent Technologies 8712ET/ES and 8714ET/ES

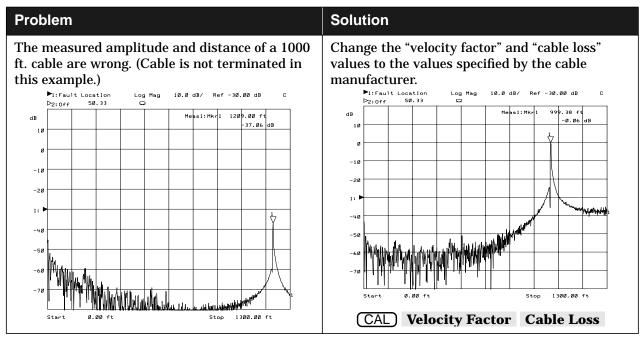
Agilent Part Number 08714-90022 Printed in USA June 2000

Supersedes October 1998

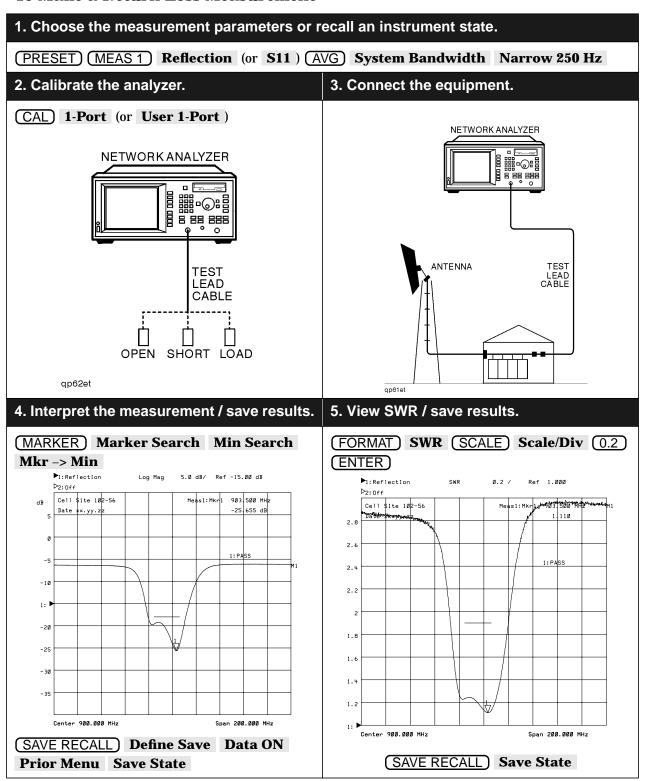

© Copyright 1998-2000 Agilent Technologies, Inc.

This quick start guide provides basic instructions on how to verify the performance of cellular antenna systems. Refer to the *Option 100 Fault Location and Structural Return Loss Measurement User's Guide Supplement* for more detailed information. Also, please refer to your analyzer's *User's Guide* for safety, warranty, and assistance information.

NOTE	This quick start guide assumes the use of an 8712ET or 8714ET. If you are using an 8712ES or 8714ES,
	some key presses and displays will be slightly different.


To Make a Fault Location Measurement

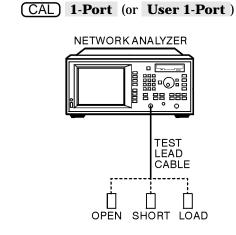
1. Choose the measurement parameters or recall an instrument state.		
PRESET BEGIN Cable Fault Location Start Distance XX ENTER Stop Distance XX ENTER 2. Reduce the interference. 3. Calibrate the analyzer.		
BEGIN Cable Fault Location Band Pass Center Frequency 900 MHz	CAL Full Band Cal NETWORK ANALYZER	
FREQ Fault Loc Frequency Band Pass Max Span (300) MHz	TEST LEAD CABLE	
AVG System Bandwidth Narrow 250 Hz	OPEN SHORT LOAD	



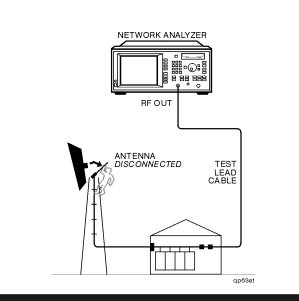
If Measurement Results Were Poor

The following results indicate a specific problem you may encounter. Refer to your *Option 100 User's Guide Supplement* for more information.

To Make a Return Loss Measurement

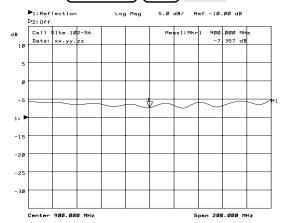

To Make an Insertion Loss Measurement

1. Choose the measurement parameters or recall an instrument state.


System Bandwidth Narrow 250 Hz

2. Calibrate the analyzer.

3. Connect the equipment.


qp62et

4. Interpret the measurement / save results.

5. Calculate insertion loss and end of cable.

SAVE RECALL Define Save Data ON
Prior Menu Save State

- **Insertion Loss Calculation**
- = marker value \div 2
- $= 7.36 \text{ dB} \div 2 = 3.68 \text{ dB}$

End of Cable Calculation

 $=\lambda \div 2$

where:

 λ (wavelength) = $c \times V_f \div \Delta f$

 $\Delta f = 10 \text{ MHz}$ between bumps

 V_f (velocity factor) ≈ 1.0

 $c \approx 10^9$ ft/sec

 $\lambda = 10^9 \text{ ft/sec} \div 10^7 \text{ cycles/sec} = 100 \text{ ft}$

 $= 100 \text{ ft} \div 2 = 50 \text{ ft}$